
Orange3 Text Mining Documentation
Release

Biolab

January 26, 2017

Widgets

1 Corpus 1

2 NY Times 5

3 Twitter 9

4 Wikipedia 13

5 Pubmed 17

6 Corpus Viewer 21

7 Preprocess Text 25

8 Bag of Words 31

9 Topic Modelling 35

10 Word Enrichment 39

11 Word Cloud 43

12 GeoMap 47

13 Corpus 51

14 Preprocessor 53

15 Twitter 55

16 New York Times 57

17 Wikipedia 59

18 Topic Modeling 61

19 Tag 63

20 Indices and tables 65

i

ii

CHAPTER 1

Corpus

Load a corpus of text documents, (optionally) tagged with categories.

1.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

1.2 Description

Corpus widget reads text corpora from files and sends a corpus instance to its output channel. History of the most
recently opened files is maintained in the widget. The widget also includes a directory with sample corpora that come
pre-installed with the add-on.

The widget reads data from Excel (.xlsx), comma-separated (.csv) and native tab-delimited (.tab) files.

1. Browse through previously opened data files, or load any of the sample ones.

2. Browse for a data file.

3. Reloads currently selected data file.

4. Information on the loaded data set.

5. Features that will be used in text analysis.

6. Features that won’t be used in text analysis and serve as labels or class.

You can drag and drop features between the two boxes and also change the order in which they appear.

1

Orange3 Text Mining Documentation, Release

1.3 Example

The first example shows a very simple use of Corpus widget. Place Corpus onto canvas and connect it to Corpus
Viewer. We’ve used booxexcerpts.tab data set, which comes with the add-on, and inspected it in Corpus Viewer.

The second example demonstrates how to quickly visualize your corpus with Word Cloud. We could connect Word
Cloud directly to Corpus, but instead we decided to apply some preprocessing with Preprocess Text. We are again
working with bookexcerpts.tab. We’ve put all text to lowercase, tokenized (split) the text to words only, filtered out
English stopwords and selected a 100 most frequent tokens.

2 Chapter 1. Corpus

Orange3 Text Mining Documentation, Release

1.3. Example 3

Orange3 Text Mining Documentation, Release

4 Chapter 1. Corpus

CHAPTER 2

NY Times

Loads data from the New York Times’ Article Search API.

2.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

2.2 Description

NYTimes widget loads data from New York Times’ Article Search API. You can query NYTimes articles from
September 18, 1851 to today, but the API limit is set to allow retrieving only a 1000 documents per query. Define
which features to use for text mining, Headline and Abstract being selected by default.

To use the widget, you must enter your own API key.

1. To begin your query, insert NY Times’ Article Search API key. The key is securely saved in your system keyring
service (like Credential Vault, Keychain, KWallet, etc.) and won’t be deleted when clearing widget settings.

2. Set query parameters:

• Query

• Query time frame. The widget allows querying articles from September 18, 1851 onwards. Default is
set to 1 year back from the current date.

3. Define which features to include as text features.

4. Information on the output.

5. Produce report.

5

https://developer.nytimes.com/
https://developer.nytimes.com/signup

Orange3 Text Mining Documentation, Release

6 Chapter 2. NY Times

Orange3 Text Mining Documentation, Release

6. Run or stop the query.

2.3 Example

NYTimes is a data retrieving widget, similar to Twitter and Wikipedia. As it can retrieve geolocations, that is geo-
graphical locations the article mentions, it is great in combination with GeoMap widget.

First, let’s query NYTimes for all articles on Slovenia. We can retrieve the articles found and view the results in Corpus
Viewer. The widget displays all the retrieved features, but includes on selected features as text mining features.

Now, let’s inspect the distribution of geolocations from the articles mentioning Slovenia. We can do this with GeoMap.
Unsuprisignly, Croatia and Hungary appear the most often in articles on Slovenia (discounting Slovenia itself), with
the rest of Europe being mentioned very often as well.

2.3. Example 7

Orange3 Text Mining Documentation, Release

8 Chapter 2. NY Times

CHAPTER 3

Twitter

Fetching data from The Twitter Search API.

3.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

3.2 Description

Twitter widget enables querying tweets through Twitter API. You can query by content, author or both and accum-
mulate results should you wish to create a larger data set. The widget only supports REST API and allows queries for
up to two weeks back.

1. To begin your queries, insert Twitter key and secret. They are securely saved in your system keyring service
(like Credential Vault, Keychain, KWallet, etc.) and won’t be deleted when clearing widget settings. You must
first create a Twitter app to get API keys.

2. Set query parameters:

• Query word list: list desired queries, one per line. Queries are automatically joined by OR.

• Search by: specify whether you want to search by content, author or both. If searching by author, you
must enter proper Twitter handle (without @) in the query list.

• Allow retweets: if ‘Allow retweets’ is checked, retweeted tweets will also appear on the output. This
might duplicate some results.

• Date: set the query time frame. Twitter only allows retrieving tweets from up to two weeks back.

• Language: set the language of retrieved tweets. Any will retrieve tweets in any language.

9

https://dev.twitter.com/rest/public/search
https://apps.twitter.com/

Orange3 Text Mining Documentation, Release

10 Chapter 3. Twitter

Orange3 Text Mining Documentation, Release

• Max tweets: set the top limit of retrieved tweets. If box is not ticked, no upper bound will be set -
widget will retrieve all available tweets.

• Accumulate results: if ‘Accumulate results’ is ticked, widget will append new queries to the previous
ones. Enter new queries, run Search and new results will be appended to the previous ones.

3. Define which features to include as text features.

4. Information on the number of tweets on the output.

5. Produce report.

6. Run query.

3.3 Examples

First, let’s try a simple query. We will search for tweets containing either ‘data mining’ or ‘machine learning’ in the
content and allow retweets. We will further limit our search to only a 100 tweets in English.

First, we’re checking the output in Corpus Viewer to get the initial idea about our results. Then we’re preprocessing
the tweets with lowercase, url removal, tweet tokenizer and removal of stopword and punctuation. The best way to see
the results is with Word Cloud. This will display the most popular words in field of data mining and machine learning
in the past two weeks.

Our next example is a bit more complex. We’re querying tweets from Hillary Clinton and Donald Trump from the
presidential campaign 2016.

3.3. Examples 11

Orange3 Text Mining Documentation, Release

Then we’ve used Preprocess Text to get suitable tokens on our output. We’ve connected Preprocess Text to Bag of
Words in order to create a table with words as features and their counts as values. A quick check in Word Cloud gives
us an idea about the results.

Now we would like to predict the author of the tweet. With Select Columns we’re setting ‘Author’ as our target
variable. Then we connect Select Columns to Test & Score. We’ll be using Logistic Regression as our learner,
which we also connect to Test & Score.

We can observe the results of our author predictions directly in the widget. AUC score is quite ok. Seems like we can
to some extent predict who is the author of the tweet based on the tweet content.

12 Chapter 3. Twitter

CHAPTER 4

Wikipedia

Fetching data from MediaWiki RESTful web service API.

4.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

4.2 Description

Wikipedia widget is used to retrieve texts from Wikipedia API and it is useful mostly for teaching and demonstration.

1. Query parameters:

• Query word list, where each query is listed in a new line.

• Language of the query. English is set by default.

• Number of articles to retrieve per query (range 1-25). Please note that querying is done recursively
and that disambiguations are also retrieved, sometimes resulting in a larger number of queries than set
on the slider.

2. Select which features to include as text features.

3. Information on the output.

4. Produce a report.

5. Run query.

13

https://www.mediawiki.org/wiki/API:Tutorial

Orange3 Text Mining Documentation, Release

14 Chapter 4. Wikipedia

Orange3 Text Mining Documentation, Release

4.3 Example

This is a simple example, where we use Wikipedia and retrieve the articles on ‘Slovenia’ and ‘Germany’. Then we
simply apply default preprocessing with Preprocess Text and observe the most frequent words in those articles with
Word Cloud.

Wikipedia works just like any other corpus widget (NY Times, Twitter) and can be used accordingly.

4.3. Example 15

Orange3 Text Mining Documentation, Release

16 Chapter 4. Wikipedia

CHAPTER 5

Pubmed

Fetch data from PubMed journals.

5.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

5.2 Description

PubMed comprises more than 26 million citations for biomedical literature from MEDLINE, life science journals,
and online books. The widget allows you to query and retrieve these entries. You can use regular search or construct
advanced queries.

1. Enter a valid e-mail to retrieve queries.

2. Regular search:

• Author: queries entries from a specific author. Leave empty to query by all authors.

• From: define the time frame of publication.

• Query: enter the query.

Advanced search: enables you to construct complex queries. See PubMed’s website to learn how to construct
such queries. You can also copy-paste constructed queries from the website.

3. Find records finds available data from PubMed matching the query. Number of records found will be displayed
above the button.

4. Define the output. All checked features will be on the output of the widget.

17

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed/advanced

Orange3 Text Mining Documentation, Release

18 Chapter 5. Pubmed

Orange3 Text Mining Documentation, Release

5. Set the number of record you wish to retrieve. Press Retrieve records to get results of your query on the output.
Below the button is an information on the number of records on the output.

5.3 Example

PubMed can be used just like any other data widget. In this example we’ve queried the database for records on
orchids. We retrieved 1000 records and kept only ‘abstract’ in our meta features to limit the construction of tokens
only to this feature.

We used Preprocess Text to remove stopword and words shorter than 3 characters (regexp \b\w{1,2}\b). This will
perhaps get rid of some important words denoting chemicals, so we need to be careful with what we filter out. For the
sake of quick inspection we only retained longer words, which are displayed by frequency in Word Cloud.

5.3. Example 19

Orange3 Text Mining Documentation, Release

20 Chapter 5. Pubmed

CHAPTER 6

Corpus Viewer

Displays corpus content.

6.1 Signals

Inputs:

• Data

Data instance.

Outputs:

• Corpus

A Corpus instance.

6.2 Description

Corpus Viewer is primarily meant for viewing text files (instances of Corpus), but it can also display other data files
from File widget. Corpus Viewer will always output an instance of corpus. If RegExp filtering is used, the widget
will output only matching documents.

1. Information:

• Documents: number of documents on the input

• Preprocessed: if preprocessor is used, the result is True, else False. Reports also on the number of
tokens and types (unique tokens).

• POS tagged: if POS tags are on the input, the result is True, else False.

• N-grams range: if N-grams are set in Preprocess Text, results are reported, default is 1-1 (one-grams).

• Matching: number of documents matching the RegExp Filter. All documents are output by default.

21

Orange3 Text Mining Documentation, Release

2. RegExp Filter: Python regular expression for filtering documents. By default no documents are filtered (entire
corpus is on the output).

3. Search Features: features by which the RegExp Filter is filtering. Use Ctrl (Cmd) to select multiple features.

4. Display Features: features that are displayed in the viewer. Use Ctrl (Cmd) to select multiple features.

5. Show Tokens & Tags: if tokens and POS tag are present on the input, you can check this box to display them.

6. If Auto commit is on, changes are communicated automatically. Alternatively press Commit.

6.3 Example

Corpus Viewer can be used for displaying all or some documents in corpus. In this example, we will first load
bookexcerpts.tab, that already comes with the add-on, into Corpus widget. Then we will preprocess the text into
words, filter out the stopwords, create bi-grams and add POS tags (more on preprocessing in Preprocess Text). Now
we want to see the results of preprocessing. In Corpus Viewer we can see, how many unique tokens we got and
what they are (tick Show Tokens & Tags). Since we used also POS tagger to show part-of-speech labels, they will be
displayed alongside tokens underneath the text.

Now we will filter out just the documents talking about a character Bill. We use regular expression \bBill\b to find the
documents containing only the word Bill. You can output matching or non-matching documents, view them in another
Corpus Viewer or further analyse them.

22 Chapter 6. Corpus Viewer

https://docs.python.org/3/library/re.html

Orange3 Text Mining Documentation, Release

6.3. Example 23

Orange3 Text Mining Documentation, Release

24 Chapter 6. Corpus Viewer

CHAPTER 7

Preprocess Text

Preprocesses corpus with selected methods.

7.1 Signals

Inputs:

• Corpus

Corpus instance.

Outputs:

• Corpus

Preprocessed corpus.

7.2 Description

Preprocess Text splits your text into smaller units (tokens), filters them, runs normalization (stemming, lemmatiza-
tion), creates n-grams and tags tokens with part-of-speech labels. Steps in the analysis are applied sequentially and
can be turned on or off.

1. Information on preprocessed data. Document count reports on the number of documents on the input. Total
tokens counts all the tokens in corpus. Unique tokens excludes duplicate tokens and reports only on unique
tokens in the corpus.

2. Transformation transforms input data. It applies lowercase transformation by default.

• Lowercase will turn all text to lowercase.

• Remove accents will remove all diacritics/accents in text. naïve → naive

• Parse html will detect html tags and parse out text only. <a href...>Some text → Some text

• Remove urls will remove urls from text. This is a http://orange.biolab.si/ url. → This is a url.

25

https://en.wikipedia.org/wiki/Stemming
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/Part_of_speech
http://orange.biolab.si/

Orange3 Text Mining Documentation, Release

26 Chapter 7. Preprocess Text

Orange3 Text Mining Documentation, Release

3. Tokenization is the method of breaking the text into smaller components (words, sentences, bigrams).

• Word & Punctuation will split the text by words and keep punctuation symbols. This example.
→ (This), (example), (.)

• Whitespace will split the text by whitespace only. This example. → (This), (example.)

• Sentence will split the text by fullstop, retaining only full sentences. This example. Another ex-
ample. → (This example.), (Another example.)

• Regexp will split the text by provided regex. It splits by words only by default (omits punctuation).

• Tweet will split the text by pre-trained Twitter model, which keeps hashtags, emoticons and other special symbols.
This example. :-) #simple → (This), (example), (.), (:-)), (#simple)

4. Normalization applies stemming and lemmatization to words. (I’ve always loved cats. → I have alway love cat.) For languages other than English use Snowball Stemmer (offers languages available in its NLTK implementation).

• Porter Stemmer applies the original Porter stemmer.

• Snowball Stemmer applies an improved version of Porter stemmer (Porter2). Set the language for
normalization, default is English.

• WordNet Lemmatizer applies a networks of cognitive synonyms to tokens based on a large lexical
database of English.

5. Filtering removes or keeps a selection of words.

• Stopwords removes stopwords from text (e.g. removes ‘and’, ‘or’, ‘in’...). Select the language to filter
by, English is set as default. You can also load your own list of stopwords provided in a simple *.txt
file with one stopword per line.

Click ‘browse’ icon to select the file containing stopwords. If the file was properly loaded, its name
will be displayed next to pre-loaded stopwords. Change ‘English’ to ‘None’ if you wish to filter out
only the provided stopwords. Click ‘reload’ icon to reload the list of stopwords.

• Lexicon keeps only words provided in the file. Load a *.txt file with one word per line to use as
lexicon. Click ‘reload’ icon to reload the lexicon.

• Regexp removes words that match the regular expression. Default is set to remove punctuation.

• Document frequency keeps tokens that appear in not less than and not more than the specified number
/ percentage of documents. If you provide integers as parameters, it keeps only tokens that appear
in the specified number of documents. E.g. DF = (3, 5) keeps only tokens that appear in 3 or more
and 5 or less documents. If you provide floats as parameters, it keeps only tokens that appear in the
specified percentage of documents. E.g. DF = (0.3, 0.5) keeps only tokens that appear in 30% to 50%
of documents. Default returns all tokens.

• Most frequent tokens keeps only the specified number of most frequent tokens. Default is a 100 most
frequent tokens.

6. N-grams Range creates n-grams from tokens. Numbers specify the range of n-grams. Default returns one-
grams and two-grams.

7. POS Tagger runs part-of-speech tagging on tokens.

• Averaged Perceptron Tagger runs POS tagging with Matthew Honnibal’s averaged perceptron tagger.

• Treebank POS Tagger (MaxEnt) runs POS tagging with a trained Penn Treebank model.

7.2. Description 27

https://en.wikipedia.org/wiki/Tokenization_(lexical_analysis)
https://en.wikipedia.org/wiki/Regular_expression
https://tartarus.org/martin/PorterStemmer/
http://snowballstem.org/
http://wordnet.princeton.edu/
https://spacy.io/blog/part-of-speech-pos-tagger-in-python
http://web.mit.edu/6.863/www/fall2012/projects/writeups/max-entropy-nltk.pdf

Orange3 Text Mining Documentation, Release

• Stanford POS Tagger runs a log-linear part-of-speech tagger designed by Toutanova et al. Please
download it from the provided website and load it in Orange.

8. Produce a report.

9. If Commit Automatically is on, changes are communicated automatically. Alternatively press Commit.

Note: Preprocess Text applies preprocessing steps in the order they are listed. This means it will first transform the
text, then apply tokenization, POS tags, normalization, filtering and finally constructs n-grams based on given tokens.
This is especially important for WordNet Lemmatizer since it requires POS tags for proper normalization.

7.3 Useful Regular Expressions

Here are some useful regular expressions for quick filtering:

\bword\b matches exact word
\w+ matches only words, no punctuation
\b(B|b)\w+\b matches words beginning with the letter b
\w{4,} matches words that are longer than 4 characters
\b\w+(Y|y)\b matches words ending with the letter y

7.4 Examples

In the first example we will observe the effects of preprocessing on our text. We are working with bookexcerpts.tab that
we’ve loaded with Corpus widget. We have connected Preprocess Text to Corpus and retained default preprocessing
methods (lowercase, per-word tokenization and stopword removal). The only additional parameter we’ve added as
outputting only the first 100 most frequent tokens. Then we connected Preprocess Text with Word Cloud to observe
words that are the most frequent in our text. Play around with different parameters, to see how they transform the
output.

The second example is slightly more complex. We first acquired our data with Twitter widget. We quired the internet
for tweets from users @HillaryClinton and @realDonaldTrump and got their tweets from the past two weeks, 242 in
total.

In Preprocess Text there’s Tweet tokenization available, which retains hashtags, emojis, mentions and so on. However,
this tokenizer doesn’t get rid of punctuation, thus we expanded the Regexp filtering with symbols that we wanted to
get rid of. We ended up with word-only tokens, which we displayed in Word Cloud. Then we created a schema for
predicting author based on tweet content, which is explained in more details in the documentation for Twitter widget.

28 Chapter 7. Preprocess Text

http://nlp.stanford.edu/software/tagger.shtml#Download

Orange3 Text Mining Documentation, Release

7.4. Examples 29

Orange3 Text Mining Documentation, Release

30 Chapter 7. Preprocess Text

CHAPTER 8

Bag of Words

Generates a bag of words from the input corpus.

8.1 Signals

Inputs:

• Corpus

Corpus instance.

Outputs:

• Corpus

Corpus with bag of words.

8.2 Description

Bag of Words model creates a corpus with word counts for each data instance (document). The count can be either
absolute, binary (contains or does not contain) or sublinear (logarithm of the term frequency). Bag of words model is
required in combination with Word Enrichment and could be used for predictive modelling.

1. Parameters for bag of words model:

• Term Frequency:

– Count: number of occurences of a word in a document

– Binary: word appears or does not appear in the document

– Sublinear: logarithm of term frequency (count)

• Document Frequency:

– (None)

– IDF: inverse document frequency

31

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
http://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html

Orange3 Text Mining Documentation, Release

– Smooth IDF: adds one to document frequencies to prevent zero division.

• Regulariation:

– (None)

– L1 (Sum of elements): normalizes vector length to sum of elements

– L2 (Euclidean): normalizes vector length to sum of squares

2. Produce a report.

3. If Commit Automatically is on, changes are communicated automatically. Alternatively press Commit.

8.3 Example

In the first example we will simply check how the bag of words model looks like. Load bookexcerpts.tab with Corpus
widget and connect it to Bag of Words. Here we kept the defaults - a simple count of term frequencies. Check what
the Bag of Words outputs with Data Table. The final column in white represents term frequencies for each document.

In the second example we will try to predict document category. We are still using the bookexcerpts.tab data set, which
we sent through Preprocess Text with default parameters. Then we connected Preprocess Text to Bag of Words to
obtain term frequencies by which we will compute the model.

Connect Bag of Words to Test & Score for predictive modelling. Connect SVM or any other classifier to Test &
Score as well (both on the left side). Test & Score will now compute performance scores for each learner on the
input. Here we got quite impressive results with SVM. Now we can check, where the model made a mistake.

Add Confusion Matrix to Test & Score. Confusion matrix displays correctly and incorrectly classified documents.
Select Misclassified will output misclassified documents, which we can further inspect with Corpus Viewer.

32 Chapter 8. Bag of Words

http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

Orange3 Text Mining Documentation, Release

8.3. Example 33

Orange3 Text Mining Documentation, Release

34 Chapter 8. Bag of Words

CHAPTER 9

Topic Modelling

Topic modelling with Latent Diriclet Allocation, Latent Semantic Indexing or Hierarchical Dirichlet Process.

9.1 Signals

Inputs:

• Corpus

Corpus instance.

Outputs:

• Data

Data with topic weights appended.

• Topics

Selected topics with word weights.

9.2 Description

Topic Modelling discovers abstract topics in a corpus based on clusters of words found in each document and their
respective frequency. A document typically contains multiple topics in different proportions, thus the widget also
reports on the topic weight per document.

1. Topic modelling algorithm:

• Latent Semantic Indexing

• Latent Dirichlet Allocation

• Hierarchical Dirichlet Process

2. Parameters for the algorithm. LSI and LDA accept only the number of topics modelled, with the default set to 10. HDP, however, has more parameters. As this algorithm is computationally very demanding, we recommend you to try it on a subset or set all the required parameters in advance and only then run the algorithm (connect the input to the widget).

35

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
https://en.wikipedia.org/wiki/Hierarchical_Dirichlet_process

Orange3 Text Mining Documentation, Release

• First level concentration (𝛾): distribution at the first (corpus) level of Dirichlet Process

• Second level concentration (𝛼): distribution at the second (document) level of Dirichlet Process

• The topic Dirichlet (𝛼): concentration parameter used for the topic draws

• Top level truncation (T): corpus-level truncation (no of topics)

• Second level truncation (K): document-level truncation (no of topics)

• Learning rate (𝜅): step size

• Slow down parameter (𝜏)

3. Produce a report.

4. If Commit Automatically is on, changes are communicated automatically. Alternatively press Commit.

9.3 Example

In the first example, we present a simple use of the Topic Modelling widget. First we load bookexcerpts.tab data set
and use Preprocess Text to tokenize by words only. Then we connect Preprocess Text to Topic Modelling, where we
use a simple Latent Semantic Indexing to find 10 topics in the text.

We then select the first topic and display the most frequent words in the topic in Word Cloud. We also connected
Preprocess Text to Word Cloud in order to be able to output selected documents. Now we can select a specific word
in the word cloud, say polly. It will be colored red and also highlighted in the word list on the left.

Now we can observe all the documents containing the word polly in Corpus Viewer.

The second example will show how to use a more complex schema to find highly relevant words in a topic. We loaded
a data set with recent tweets containing words ‘Slovenia’ and ‘Germany’. We’ve done that with Twitter widget and
saved it with Save Data. Since the data set was very big, we gathered the tweets and saved it to .tab format. Later we
can always reload the saved data with Corpus.

Then we used Preprocess Text to tokenize by words and filter out numbers. Then we have to pass the data through
Bag of Words in order to be able to use the corpus on Word Enrichment.

We pass the output of Bag of Words to Topic Modelling, where we select the first topic for inspection. We can already
inspect word frequency of Topic 1 in Word Cloud.

36 Chapter 9. Topic Modelling

Orange3 Text Mining Documentation, Release

9.3. Example 37

Orange3 Text Mining Documentation, Release

Finally, we can use Select Rows to retrieve only those documents that have a weight of Topic 1 higher than 0.9
(meaning Topic 1 is represented in more than 9/10 of the document). Finally we connect Select Rows and Bag of
Words to Word Enrichment. In Word Enrichment we can observe the most significant words in Topic 1.

38 Chapter 9. Topic Modelling

CHAPTER 10

Word Enrichment

Word enrichment analysis for selected documents.

10.1 Signals

Inputs:

• Data

Corpus instance.

• Selected Data

Selected instances from corpus.

Outputs:

• (None)

10.2 Description

Word Enrichment displays a list of words with lower p-values (higher significance) for a selected subset compared to
the entire corpus. Lower p-value indicates a higher likelihood that the word is significant for the selected subset (not
randomly occurring in a text). FDR (False Discovery Rate) is linked to p-value and reports on the expected percent of
false predictions in the set of predictions, meaning it account for false positives in list of low p-values.

1. Information on the input.

• Cluster words are all the tokens from the corpus.

• Selected words are all the tokens from the selected subset.

• After filtering reports on the enriched words found in the subset.

2. Filter enables you to filter by:

• p-value

39

https://en.wikipedia.org/wiki/P-value

Orange3 Text Mining Documentation, Release

40 Chapter 10. Word Enrichment

Orange3 Text Mining Documentation, Release

• false discovery rate (FDR)

10.3 Example

In the example below, we’re retrieved recent tweets from the 2016 presidential candidates, Donald Trump and Hillary
Clinton. Then we’ve preprocessed the tweets to get only words as tokens and to remove the stopwords. We’ve
connected the preprocessed corpus to Bag of Words to get a table with word counts for our corpus.

Then we’ve connected Corpus Viewer to Bag of Words and selected only those tweets that were published by Donald
Trump. See how we marked only the Author as our Search feature to retrieve those tweets.

Word Enrichment accepts two inputs - the entire corpus to serve as a reference and a selected subset from the corpus
to do the enrichment on. First connect Corpus Viewer to Word Enrichment (input Matching Docs → Selected Data)
and then connect Bag of Words to it (input Corpus → Data). In the Word Enrichment widget we can see the list of
words that are more significant for Donald Trump than they are for Hillary Clinton.

10.3. Example 41

http://www.nonlinear.com/support/progenesis/comet/faq/v2.0/pq-values.aspx

Orange3 Text Mining Documentation, Release

42 Chapter 10. Word Enrichment

CHAPTER 11

Word Cloud

Generates a word cloud from corpus.

11.1 Signals

Inputs:

• Topic

Selected topic.

• Corpus

A Corpus instance.

Outputs:

• Corpus

Documents that match the selection.

11.2 Description

Word Cloud displays tokens in the corpus, their size denoting the frequency of the word in corpus. Words are listed
by their frequency (weight) in the widget. The widget outputs documents, containing selected tokens from the word
cloud.

1. Information on the input.

• number of words (tokens) in a topic

• number of documents and tokens in the corpus

2. Adjust the plot.

• If Color words is ticked, words will be assigned a random color. If unchecked, the words will be
black.

43

Orange3 Text Mining Documentation, Release

• Word tilt adjust the tilt of words. The current state of tilt is displayed next to the slider (‘no’ is the
default).

• Regenerate word cloud plot the cloud anew.

3. Words & weights displays a sorted list of words (tokens) by their frequency in the corpus or topic. Clicking on a
word will select that same word in the cloud and output matching documents. Use Ctrl to select more than one
word. Documents matching ANY of the selected words will be on the output (logical OR).

4. Save Image saves the image to your computer in a .svg or .png format.

11.3 Example

Word Cloud is an excellent widget for displaying the current state of the corpus and for monitoring the effects of
preprocessing.

Use Corpus to load the data. Connect Preprocess Text to it and set your parameters. We’ve used defaults here, just to
see the difference between the default preprocessing in the Word Cloud widget and the Preprocess Text widget.

We can see from the two widgets, that Preprocess Text displays only words, while default preprocessing in the Word
Cloud tokenizes by word and punctuation.

44 Chapter 11. Word Cloud

Orange3 Text Mining Documentation, Release

11.3. Example 45

Orange3 Text Mining Documentation, Release

46 Chapter 11. Word Cloud

CHAPTER 12

GeoMap

Displays geographic distribution of data.

12.1 Signals

Inputs:

• Data

Data set.

Outputs:

• Corpus

A Corpus instance.

12.2 Description

GeoMap widget shows geolocations from textual (string) data. It finds mentions of geographic names (countries and
capitals) and displays distributions (frequency of mentiones) of these names on a map. It works with any Orange
widget that outputs a data table and that contains at least one string attribute. The widget outputs selected data
instances, that is all documents containing mentions of a selected country (or countries).

1. Select the meta attribute you want to search geolocations by. The widget will find all mentions of geolocations
in a text and display distributions on a map.

2. Select the type of map you wish to display. The options are World, Europe and USA. You can zoom in and out
of the map by pressing + and - buttons on a map or by mouse scroll.

3. The legend for the geographic distribution of data. Countries with the boldest color are most often mentioned in
the selected region attribute (highest frequency).

To select documents mentioning a specific country, click on a country and the widget will output matching documents.
To select more than one country hold Ctrl/Cmd upon selection.

47

Orange3 Text Mining Documentation, Release

12.3 Example

GeoMap widget can be used for simply visualizing distributions of geolocations or for a more complex interactive
data analysis. Here, we’ve queried NY Times for articles on Slovenia for the time period of the last year (2015-2016).
First we checked the results with Corpus Viewer.

Then we sent the data to GeoMap to see distributiosn of geolocations by country attribute. The attribute already
contains country tags for each article, which is why NY Times is great in combinations with GeoMap. We selected
Germany, which sends all the documents tagged with Germany to the output. Remember, we queried NY Times for
articles on Slovenia.

We can again inspect the output with Corpus Viewer. But there’s a more interesting way of visualizing the data.
We’ve sent selected documents to Preprocess Text, where we’ve tokenized text to words and removed stopwords.

Finally, we can inspect the top words appearing in last year’s documents on Slovenia and mentioning also Germany
with Word Cloud.

48 Chapter 12. GeoMap

Orange3 Text Mining Documentation, Release

12.3. Example 49

Orange3 Text Mining Documentation, Release

50 Chapter 12. GeoMap

CHAPTER 13

Corpus

51

Orange3 Text Mining Documentation, Release

52 Chapter 13. Corpus

CHAPTER 14

Preprocessor

53

Orange3 Text Mining Documentation, Release

54 Chapter 14. Preprocessor

CHAPTER 15

Twitter

55

Orange3 Text Mining Documentation, Release

56 Chapter 15. Twitter

CHAPTER 16

New York Times

57

Orange3 Text Mining Documentation, Release

58 Chapter 16. New York Times

CHAPTER 17

Wikipedia

59

Orange3 Text Mining Documentation, Release

60 Chapter 17. Wikipedia

CHAPTER 18

Topic Modeling

61

Orange3 Text Mining Documentation, Release

62 Chapter 18. Topic Modeling

CHAPTER 19

Tag

63

Orange3 Text Mining Documentation, Release

64 Chapter 19. Tag

CHAPTER 20

Indices and tables

• genindex

• modindex

• search

65

	Corpus
	NY Times
	Twitter
	Wikipedia
	Pubmed
	Corpus Viewer
	Preprocess Text
	Bag of Words
	Topic Modelling
	Word Enrichment
	Word Cloud
	GeoMap
	Corpus
	Preprocessor
	Twitter
	New York Times
	Wikipedia
	Topic Modeling
	Tag
	Indices and tables

