
Orange3 Text Mining Documentation
Release

Biolab

Aug 03, 2017

Contents

1 Widgets 1

2 Scripting 45

3 Indices and tables 55

Python Module Index 57

i

ii

CHAPTER 1

Widgets

1.1 Corpus

Load a corpus of text documents, (optionally) tagged with categories.

1.1.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

1.1.2 Description

Corpus widget reads text corpora from files and sends a corpus instance to its output channel. History of the most
recently opened files is maintained in the widget. The widget also includes a directory with sample corpora that come
pre-installed with the add-on.

The widget reads data from Excel (.xlsx), comma-separated (.csv) and native tab-delimited (.tab) files.

1. Browse through previously opened data files, or load any of the sample ones.

2. Browse for a data file.

1

Orange3 Text Mining Documentation, Release

3. Reloads currently selected data file.

4. Information on the loaded data set.

5. Features that will be used in text analysis.

6. Features that won’t be used in text analysis and serve as labels or class.

You can drag and drop features between the two boxes and also change the order in which they appear.

1.1.3 Example

The first example shows a very simple use of Corpus widget. Place Corpus onto canvas and connect it to Corpus
Viewer. We’ve used booxexcerpts.tab data set, which comes with the add-on, and inspected it in Corpus Viewer.

The second example demonstrates how to quickly visualize your corpus with Word Cloud. We could connect Word
Cloud directly to Corpus, but instead we decided to apply some preprocessing with Preprocess Text. We are again
working with book-excerpts.tab. We’ve put all text to lowercase, tokenized (split) the text to words only, filtered out
English stopwords and selected a 100 most frequent tokens.

1.2 Import Documents

Import text documents from folders.

2 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.2. Import Documents 3

Orange3 Text Mining Documentation, Release

1.2.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

1.2.2 Description

Import Documents widget retrieves text files from folders and creates a corpus. The widget reads .txt, .docx, .odt,
.pdf and .xml files. If a folder contains subfolders, they will be used as class labels.

1. Folder being loaded.

2. Load folder from a local machine.

3. Reload the data.

4. Number of documents retrieved.

If the widget cannot read the file for some reason, the file will be skipped. Files that were successfully retrieved will
still be on the output.

1.2.3 Example

To retrieve the data, select the folder icon on the right side of the widget. Select the folder you wish to turn into coprus.
Once the loading is finished, you will see how many documents the widget retrieved. To inspect them, connect the
widget to Corpus Viewer. We’ve used a set of Kennedy’s speeches in a plain text format.

Now let us try it with subfolders. We have placed Kennedy’s speeches in two folders - pre-1962 and post-1962. If
I load the parent folder, these two subfolders will be used as class labels. Check the output of the widget in a Data
Table.

1.3 NY Times

Loads data from the New York Times’ Article Search API.

1.3.1 Signals

Inputs:

• (None)

4 Chapter 1. Widgets

https://developer.nytimes.com/

Orange3 Text Mining Documentation, Release

1.3. NY Times 5

Orange3 Text Mining Documentation, Release

Outputs:

• Corpus

A Corpus instance.

1.3.2 Description

NYTimes widget loads data from New York Times’ Article Search API. You can query NYTimes articles from
September 18, 1851 to today, but the API limit is set to allow retrieving only a 1000 documents per query. Define
which features to use for text mining, Headline and Abstract being selected by default.

To use the widget, you must enter your own API key.

1. To begin your query, insert NY Times’ Article Search API key. The key is securely saved in your system keyring
service (like Credential Vault, Keychain, KWallet, etc.) and won’t be deleted when clearing widget settings.

2. Set query parameters:

• Query

• Query time frame. The widget allows querying articles from September 18, 1851 onwards. Default is
set to 1 year back from the current date.

6 Chapter 1. Widgets

https://developer.nytimes.com/signup

Orange3 Text Mining Documentation, Release

3. Define which features to include as text features.

4. Information on the output.

5. Produce report.

6. Run or stop the query.

1.3.3 Example

NYTimes is a data retrieving widget, similar to Twitter and Wikipedia. As it can retrieve geolocations, that is geo-
graphical locations the article mentions, it is great in combination with GeoMap widget.

First, let’s query NYTimes for all articles on Slovenia. We can retrieve the articles found and view the results in Corpus
Viewer. The widget displays all the retrieved features, but includes on selected features as text mining features.

Now, let’s inspect the distribution of geolocations from the articles mentioning Slovenia. We can do this with GeoMap.
Unsuprisignly, Croatia and Hungary appear the most often in articles on Slovenia (discounting Slovenia itself), with

1.3. NY Times 7

Orange3 Text Mining Documentation, Release

the rest of Europe being mentioned very often as well.

1.4 The Guardian

Fetching data from The Guardian Open Platform.

1.4.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

1.4.2 Description

No description for this widget yet.

1.4.3 Examples

No examples for this widget yet.

1.5 Twitter

Fetching data from The Twitter Search API.

1.5.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

8 Chapter 1. Widgets

http://open-platform.theguardian.com
https://dev.twitter.com/rest/public/search

Orange3 Text Mining Documentation, Release

1.5.2 Description

Twitter widget enables querying tweets through Twitter API. You can query by content, author or both and accum-
mulate results should you wish to create a larger data set. The widget only supports REST API and allows queries for
up to two weeks back.

1. To begin your queries, insert Twitter key and secret. They are securely saved in your system keyring service
(like Credential Vault, Keychain, KWallet, etc.) and won’t be deleted when clearing widget settings. You must
first create a Twitter app to get API keys.

2. Set query parameters:

• Query word list: list desired queries, one per line. Queries are automatically joined by OR.

• Search by: specify whether you want to search by content, author or both. If searching by author, you
must enter proper Twitter handle (without @) in the query list.

• Allow retweets: if ‘Allow retweets’ is checked, retweeted tweets will also appear on the output. This
might duplicate some results.

• Date: set the query time frame. Twitter only allows retrieving tweets from up to two weeks back.

• Language: set the language of retrieved tweets. Any will retrieve tweets in any language.

• Max tweets: set the top limit of retrieved tweets. If box is not ticked, no upper bound will be set -
widget will retrieve all available tweets.

• Accumulate results: if ‘Accumulate results’ is ticked, widget will append new queries to the previous
ones. Enter new queries, run Search and new results will be appended to the previous ones.

3. Define which features to include as text features.

4. Information on the number of tweets on the output.

5. Produce report.

6. Run query.

1.5.3 Examples

First, let’s try a simple query. We will search for tweets containing either ‘data mining’ or ‘machine learning’ in the
content and allow retweets. We will further limit our search to only a 100 tweets in English.

First, we’re checking the output in Corpus Viewer to get the initial idea about our results. Then we’re preprocessing
the tweets with lowercase, url removal, tweet tokenizer and removal of stopword and punctuation. The best way to see
the results is with Word Cloud. This will display the most popular words in field of data mining and machine learning
in the past two weeks.

Our next example is a bit more complex. We’re querying tweets from Hillary Clinton and Donald Trump from the
presidential campaign 2016.

Then we’ve used Preprocess Text to get suitable tokens on our output. We’ve connected Preprocess Text to Bag of
Words in order to create a table with words as features and their counts as values. A quick check in Word Cloud gives
us an idea about the results.

Now we would like to predict the author of the tweet. With Select Columns we’re setting ‘Author’ as our target
variable. Then we connect Select Columns to Test & Score. We’ll be using Logistic Regression as our learner,
which we also connect to Test & Score.

We can observe the results of our author predictions directly in the widget. AUC score is quite ok. Seems like we can
to some extent predict who is the author of the tweet based on the tweet content.

1.5. Twitter 9

https://apps.twitter.com/

Orange3 Text Mining Documentation, Release

10 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.5. Twitter 11

Orange3 Text Mining Documentation, Release

1.6 Wikipedia

Fetching data from MediaWiki RESTful web service API.

1.6.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

1.6.2 Description

Wikipedia widget is used to retrieve texts from Wikipedia API and it is useful mostly for teaching and demonstration.

1. Query parameters:

• Query word list, where each query is listed in a new line.

• Language of the query. English is set by default.

• Number of articles to retrieve per query (range 1-25). Please note that querying is done recursively
and that disambiguations are also retrieved, sometimes resulting in a larger number of queries than set
on the slider.

2. Select which features to include as text features.

3. Information on the output.

4. Produce a report.

5. Run query.

1.6.3 Example

This is a simple example, where we use Wikipedia and retrieve the articles on ‘Slovenia’ and ‘Germany’. Then we
simply apply default preprocessing with Preprocess Text and observe the most frequent words in those articles with
Word Cloud.

Wikipedia works just like any other corpus widget (NY Times, Twitter) and can be used accordingly.

1.7 Pubmed

Fetch data from PubMed journals.

12 Chapter 1. Widgets

https://www.mediawiki.org/wiki/API:Tutorial
http://www.ncbi.nlm.nih.gov/pubmed

Orange3 Text Mining Documentation, Release

1.7. Pubmed 13

Orange3 Text Mining Documentation, Release

1.7.1 Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

1.7.2 Description

PubMed comprises more than 26 million citations for biomedical literature from MEDLINE, life science journals,
and online books. The widget allows you to query and retrieve these entries. You can use regular search or construct
advanced queries.

1. Enter a valid e-mail to retrieve queries.

2. Regular search:

• Author: queries entries from a specific author. Leave empty to query by all authors.

• From: define the time frame of publication.

• Query: enter the query.

Advanced search: enables you to construct complex queries. See PubMed’s website to learn how to construct
such queries. You can also copy-paste constructed queries from the website.

3. Find records finds available data from PubMed matching the query. Number of records found will be displayed
above the button.

14 Chapter 1. Widgets

http://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed/advanced

Orange3 Text Mining Documentation, Release

1.7. Pubmed 15

Orange3 Text Mining Documentation, Release

4. Define the output. All checked features will be on the output of the widget.

5. Set the number of record you wish to retrieve. Press Retrieve records to get results of your query on the output.
Below the button is an information on the number of records on the output.

1.7.3 Example

PubMed can be used just like any other data widget. In this example we’ve queried the database for records on
orchids. We retrieved 1000 records and kept only ‘abstract’ in our meta features to limit the construction of tokens
only to this feature.

We used Preprocess Text to remove stopword and words shorter than 3 characters (regexp \b\w{1,2}\b). This will
perhaps get rid of some important words denoting chemicals, so we need to be careful with what we filter out. For the
sake of quick inspection we only retained longer words, which are displayed by frequency in Word Cloud.

1.8 Corpus Viewer

Displays corpus content.

1.8.1 Signals

Inputs:

• Data

Data instance.

16 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

Outputs:

• Corpus

A Corpus instance.

1.8.2 Description

Corpus Viewer is primarily meant for viewing text files (instances of Corpus), but it can also display other data files
from File widget. Corpus Viewer will always output an instance of corpus. If RegExp filtering is used, the widget
will output only matching documents.

1. Information:

• Documents: number of documents on the input

• Preprocessed: if preprocessor is used, the result is True, else False. Reports also on the number of
tokens and types (unique tokens).

• POS tagged: if POS tags are on the input, the result is True, else False.

• N-grams range: if N-grams are set in Preprocess Text, results are reported, default is 1-1 (one-grams).

• Matching: number of documents matching the RegExp Filter. All documents are output by default.

2. RegExp Filter: Python regular expression for filtering documents. By default no documents are filtered (entire
corpus is on the output).

3. Search Features: features by which the RegExp Filter is filtering. Use Ctrl (Cmd) to select multiple features.

4. Display Features: features that are displayed in the viewer. Use Ctrl (Cmd) to select multiple features.

5. Show Tokens & Tags: if tokens and POS tag are present on the input, you can check this box to display them.

6. If Auto commit is on, changes are communicated automatically. Alternatively press Commit.

1.8. Corpus Viewer 17

https://docs.python.org/3/library/re.html

Orange3 Text Mining Documentation, Release

1.8.3 Example

Corpus Viewer can be used for displaying all or some documents in corpus. In this example, we will first load book-
excerpts.tab, that already comes with the add-on, into Corpus widget. Then we will preprocess the text into words,
filter out the stopwords, create bi-grams and add POS tags (more on preprocessing in Preprocess Text). Now we want
to see the results of preprocessing. In Corpus Viewer we can see, how many unique tokens we got and what they
are (tick Show Tokens & Tags). Since we used also POS tagger to show part-of-speech labels, they will be displayed
alongside tokens underneath the text.

Now we will filter out just the documents talking about a character Bill. We use regular expression \bBill\b to find the
documents containing only the word Bill. You can output matching or non-matching documents, view them in another
Corpus Viewer or further analyse them.

1.9 Preprocess Text

Preprocesses corpus with selected methods.

18 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.9.1 Signals

Inputs:

• Corpus

Corpus instance.

Outputs:

• Corpus

Preprocessed corpus.

1.9.2 Description

Preprocess Text splits your text into smaller units (tokens), filters them, runs normalization (stemming, lemmatiza-
tion), creates n-grams and tags tokens with part-of-speech labels. Steps in the analysis are applied sequentially and
can be turned on or off.

1. Information on preprocessed data. Document count reports on the number of documents on the input. Total
tokens counts all the tokens in corpus. Unique tokens excludes duplicate tokens and reports only on unique
tokens in the corpus.

2. Transformation transforms input data. It applies lowercase transformation by default.

• Lowercase will turn all text to lowercase.

• Remove accents will remove all diacritics/accents in text. naïve → naive

• Parse html will detect html tags and parse out text only. <a href. . . >Some text → Some text

• Remove urls will remove urls from text. This is a http://orange.biolab.si/ url. → This is a url.

3. Tokenization is the method of breaking the text into smaller components (words, sentences, bigrams).

• Word & Punctuation will split the text by words and keep punctuation symbols. This example.
→ (This), (example), (.)

• Whitespace will split the text by whitespace only. This example. → (This), (example.)

• Sentence will split the text by fullstop, retaining only full sentences. This example. Another ex-
ample. → (This example.), (Another example.)

• Regexp will split the text by provided regex. It splits by words only by default (omits punctuation).

• Tweet will split the text by pre-trained Twitter model, which keeps hashtags, emoticons and other special symbols.
This example. :-) #simple → (This), (example), (.), (:-)), (#simple)

4. Normalization applies stemming and lemmatization to words. (I’ve always loved cats. → I have alway love cat.) For languages other than English use Snowball Stemmer (offers languages available in its NLTK implementation).

• Porter Stemmer applies the original Porter stemmer.

• Snowball Stemmer applies an improved version of Porter stemmer (Porter2). Set the language for
normalization, default is English.

• WordNet Lemmatizer applies a networks of cognitive synonyms to tokens based on a large lexical
database of English.

5. Filtering removes or keeps a selection of words.

• Stopwords removes stopwords from text (e.g. removes ‘and’, ‘or’, ‘in’. . .). Select the language to
filter by, English is set as default. You can also load your own list of stopwords provided in a simple
*.txt file with one stopword per line.

1.9. Preprocess Text 19

https://en.wikipedia.org/wiki/Stemming
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/Part_of_speech
http://orange.biolab.si/
https://en.wikipedia.org/wiki/Tokenization_(lexical_analysis)
https://en.wikipedia.org/wiki/Regular_expression
https://tartarus.org/martin/PorterStemmer/
http://snowballstem.org/
http://wordnet.princeton.edu/

Orange3 Text Mining Documentation, Release

20 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

Click ‘browse’ icon to select the file containing stopwords. If the file was properly loaded, its name
will be displayed next to pre-loaded stopwords. Change ‘English’ to ‘None’ if you wish to filter out
only the provided stopwords. Click ‘reload’ icon to reload the list of stopwords.

• Lexicon keeps only words provided in the file. Load a *.txt file with one word per line to use as
lexicon. Click ‘reload’ icon to reload the lexicon.

• Regexp removes words that match the regular expression. Default is set to remove punctuation.

• Document frequency keeps tokens that appear in not less than and not more than the specified number
/ percentage of documents. If you provide integers as parameters, it keeps only tokens that appear
in the specified number of documents. E.g. DF = (3, 5) keeps only tokens that appear in 3 or more
and 5 or less documents. If you provide floats as parameters, it keeps only tokens that appear in the
specified percentage of documents. E.g. DF = (0.3, 0.5) keeps only tokens that appear in 30% to 50%
of documents. Default returns all tokens.

• Most frequent tokens keeps only the specified number of most frequent tokens. Default is a 100 most
frequent tokens.

6. N-grams Range creates n-grams from tokens. Numbers specify the range of n-grams. Default returns one-
grams and two-grams.

7. POS Tagger runs part-of-speech tagging on tokens.

• Averaged Perceptron Tagger runs POS tagging with Matthew Honnibal’s averaged perceptron tagger.

• Treebank POS Tagger (MaxEnt) runs POS tagging with a trained Penn Treebank model.

• Stanford POS Tagger runs a log-linear part-of-speech tagger designed by Toutanova et al. Please
download it from the provided website and load it in Orange.

8. Produce a report.

9. If Commit Automatically is on, changes are communicated automatically. Alternatively press Commit.

Note: Preprocess Text applies preprocessing steps in the order they are listed. This means it will first transform the
text, then apply tokenization, POS tags, normalization, filtering and finally constructs n-grams based on given tokens.
This is especially important for WordNet Lemmatizer since it requires POS tags for proper normalization.

1.9.3 Useful Regular Expressions

Here are some useful regular expressions for quick filtering:

\bword\b matches exact word
\w+ matches only words, no punctuation
\b(B|b)\w+\b matches words beginning with the letter b
\w{4,} matches words that are longer than 4 characters
\b\w+(Y|y)\b matches words ending with the letter y

1.9. Preprocess Text 21

https://spacy.io/blog/part-of-speech-pos-tagger-in-python
http://web.mit.edu/6.863/www/fall2012/projects/writeups/max-entropy-nltk.pdf
http://nlp.stanford.edu/software/tagger.shtml#Download

Orange3 Text Mining Documentation, Release

1.9.4 Examples

In the first example we will observe the effects of preprocessing on our text. We are working with book-excerpts.tab
that we’ve loaded with Corpus widget. We have connected Preprocess Text to Corpus and retained default pre-
processing methods (lowercase, per-word tokenization and stopword removal). The only additional parameter we’ve
added as outputting only the first 100 most frequent tokens. Then we connected Preprocess Text with Word Cloud to
observe words that are the most frequent in our text. Play around with different parameters, to see how they transform
the output.

The second example is slightly more complex. We first acquired our data with Twitter widget. We quired the internet
for tweets from users @HillaryClinton and @realDonaldTrump and got their tweets from the past two weeks, 242 in
total.

In Preprocess Text there’s Tweet tokenization available, which retains hashtags, emojis, mentions and so on. However,
this tokenizer doesn’t get rid of punctuation, thus we expanded the Regexp filtering with symbols that we wanted to
get rid of. We ended up with word-only tokens, which we displayed in Word Cloud. Then we created a schema for
predicting author based on tweet content, which is explained in more details in the documentation for Twitter widget.

1.10 Bag of Words

Generates a bag of words from the input corpus.

1.10.1 Signals

Inputs:

• Corpus

Corpus instance.

22 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.10. Bag of Words 23

Orange3 Text Mining Documentation, Release

Outputs:

• Corpus

Corpus with bag of words.

1.10.2 Description

Bag of Words model creates a corpus with word counts for each data instance (document). The count can be either
absolute, binary (contains or does not contain) or sublinear (logarithm of the term frequency). Bag of words model is
required in combination with Word Enrichment and could be used for predictive modelling.

1. Parameters for bag of words model:

• Term Frequency:

– Count: number of occurences of a word in a document

– Binary: word appears or does not appear in the document

– Sublinear: logarithm of term frequency (count)

• Document Frequency:

– (None)

– IDF: inverse document frequency

– Smooth IDF: adds one to document frequencies to prevent zero division.

• Regulariation:

– (None)

– L1 (Sum of elements): normalizes vector length to sum of elements

– L2 (Euclidean): normalizes vector length to sum of squares

2. Produce a report.

3. If Commit Automatically is on, changes are communicated automatically. Alternatively press Commit.

24 Chapter 1. Widgets

https://en.wikipedia.org/wiki/Tf%E2%80%93idf
http://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

Orange3 Text Mining Documentation, Release

1.10.3 Example

In the first example we will simply check how the bag of words model looks like. Load book-excerpts.tab with Corpus
widget and connect it to Bag of Words. Here we kept the defaults - a simple count of term frequencies. Check what
the Bag of Words outputs with Data Table. The final column in white represents term frequencies for each document.

In the second example we will try to predict document category. We are still using the book-excerpts.tab data set,
which we sent through Preprocess Text with default parameters. Then we connected Preprocess Text to Bag of
Words to obtain term frequencies by which we will compute the model.

Connect Bag of Words to Test & Score for predictive modelling. Connect SVM or any other classifier to Test &
Score as well (both on the left side). Test & Score will now compute performance scores for each learner on the
input. Here we got quite impressive results with SVM. Now we can check, where the model made a mistake.

Add Confusion Matrix to Test & Score. Confusion matrix displays correctly and incorrectly classified documents.
Select Misclassified will output misclassified documents, which we can further inspect with Corpus Viewer.

1.11 Topic Modelling

Topic modelling with Latent Diriclet Allocation, Latent Semantic Indexing or Hierarchical Dirichlet Process.

1.11.1 Signals

Inputs:

1.11. Topic Modelling 25

Orange3 Text Mining Documentation, Release

26 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

• Corpus

Corpus instance.

Outputs:

• Data

Data with topic weights appended.

• Topics

Selected topics with word weights.

• All Topics

Topic weights by tokens.

1.11.2 Description

Topic Modelling discovers abstract topics in a corpus based on clusters of words found in each document and their
respective frequency. A document typically contains multiple topics in different proportions, thus the widget also
reports on the topic weight per document.

1. Topic modelling algorithm:

• Latent Semantic Indexing

• Latent Dirichlet Allocation

• Hierarchical Dirichlet Process

2. Parameters for the algorithm. LSI and LDA accept only the number of topics modelled, with the default set to 10. HDP, however, has more parameters. As this algorithm is computationally very demanding, we recommend you to try it on a subset or set all the required parameters in advance and only then run the algorithm (connect the input to the widget).

• First level concentration (𝛾): distribution at the first (corpus) level of Dirichlet Process

• Second level concentration (𝛼): distribution at the second (document) level of Dirichlet Process

• The topic Dirichlet (𝛼): concentration parameter used for the topic draws

• Top level truncation (T): corpus-level truncation (no of topics)

• Second level truncation (K): document-level truncation (no of topics)

• Learning rate (𝜅): step size

1.11. Topic Modelling 27

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
https://en.wikipedia.org/wiki/Hierarchical_Dirichlet_process

Orange3 Text Mining Documentation, Release

• Slow down parameter (𝜏)

3. Produce a report.

4. If Commit Automatically is on, changes are communicated automatically. Alternatively press Commit.

1.11.3 Example

In the first example, we present a simple use of the Topic Modelling widget. First we load grimm-tales-selected.tab
data set and use Preprocess Text to tokenize by words only and remove stopwords. Then we connect Preprocess Text
to Topic Modelling, where we use a simple Latent Semantic Indexing to find 10 topics in the text.

LSI provides both positive and negative weights per topic. A positive weight means the word is highly representative
of a topic, while a negative weight means the word is highly unrepresentative of a topic (the less it occurs in a text, the
more likely the topic). Positive words are colored green and negative words are colored red.

We then select the first topic and display the most frequent words in the topic in Word Cloud. We also connected
Preprocess Text to Word Cloud in order to be able to output selected documents. Now we can select a specific word
in the word cloud, say little. It will be colored red and also highlighted in the word list on the left.

Now we can observe all the documents containing the word little in Corpus Viewer.

In the second example, we will look at the correlation between topics and words/documents. Connect Topic Modelling
to Heat Map. Ensure the link is set to All Topics - Data. Topic Modelling will output a matrix of topic weights by
words from text (more precisely, tokens).

We can observe the output in a Data Table. Tokens are in rows and retrieved topics in colums. Values represent how
much a word is represented in a topic.

To visualize this matrix, open Heat Map. Select Merge by k-means and Cluster - Rows to merge similar rows into one
and sort them by similarity, which makes the visualization more compact.

In the upper part of the visualization, we have words that highly define topics 1-3 and in the lower part those that
define topics 5 and 10.

28 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

We can similarly observe topic representation across documents. We connect another Heat Map to Topic Modelling
and set link to Corpus - Data. We set Merge and Cluster as above.

In this visualization we see how much is a topic represented in a document. Looks like Topic 1 is represented almost
across the entire corpus, while other topics are more specific. To observe a specific set of document, select either a
clustering node or a row in the visualization. Then pass the data to Corpus Viewer.

1.12 Word Enrichment

Word enrichment analysis for selected documents.

1.12.1 Signals

Inputs:

• Data

Corpus instance.

• Selected Data

Selected instances from corpus.

Outputs:

• (None)

1.12.2 Description

Word Enrichment displays a list of words with lower p-values (higher significance) for a selected subset compared to
the entire corpus. Lower p-value indicates a higher likelihood that the word is significant for the selected subset (not
randomly occurring in a text). FDR (False Discovery Rate) is linked to p-value and reports on the expected percent of
false predictions in the set of predictions, meaning it account for false positives in list of low p-values.

1. Information on the input.

1.12. Word Enrichment 29

Orange3 Text Mining Documentation, Release

30 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.12. Word Enrichment 31

Orange3 Text Mining Documentation, Release

• Cluster words are all the tokens from the corpus.

• Selected words are all the tokens from the selected subset.

• After filtering reports on the enriched words found in the subset.

2. Filter enables you to filter by:

• p-value

• false discovery rate (FDR)

1.12.3 Example

In the example below, we’re retrieved recent tweets from the 2016 presidential candidates, Donald Trump and Hillary
Clinton. Then we’ve preprocessed the tweets to get only words as tokens and to remove the stopwords. We’ve
connected the preprocessed corpus to Bag of Words to get a table with word counts for our corpus.

Then we’ve connected Corpus Viewer to Bag of Words and selected only those tweets that were published by Donald
Trump. See how we marked only the Author as our Search feature to retrieve those tweets.

Word Enrichment accepts two inputs - the entire corpus to serve as a reference and a selected subset from the corpus
to do the enrichment on. First connect Corpus Viewer to Word Enrichment (input Matching Docs → Selected Data)
and then connect Bag of Words to it (input Corpus → Data). In the Word Enrichment widget we can see the list of
words that are more significant for Donald Trump than they are for Hillary Clinton.

32 Chapter 1. Widgets

https://en.wikipedia.org/wiki/P-value
http://www.nonlinear.com/support/progenesis/comet/faq/v2.0/pq-values.aspx

Orange3 Text Mining Documentation, Release

1.13 Word Cloud

Generates a word cloud from corpus.

1.13.1 Signals

Inputs:

• Topic

Selected topic.

• Corpus

A Corpus instance.

Outputs:

• Corpus

Documents that match the selection.

1.13.2 Description

Word Cloud displays tokens in the corpus, their size denoting the frequency of the word in corpus. Words are listed
by their frequency (weight) in the widget. The widget outputs documents, containing selected tokens from the word
cloud.

1. Information on the input.

• number of words (tokens) in a topic

• number of documents and tokens in the corpus

2. Adjust the plot.

• If Color words is ticked, words will be assigned a random color. If unchecked, the words will be
black.

• Word tilt adjust the tilt of words. The current state of tilt is displayed next to the slider (‘no’ is the
default).

• Regenerate word cloud plot the cloud anew.

3. Words & weights displays a sorted list of words (tokens) by their frequency in the corpus or topic. Clicking on a
word will select that same word in the cloud and output matching documents. Use Ctrl to select more than one
word. Documents matching ANY of the selected words will be on the output (logical OR).

4. Save Image saves the image to your computer in a .svg or .png format.

1.13. Word Cloud 33

Orange3 Text Mining Documentation, Release

1.13.3 Example

Word Cloud is an excellent widget for displaying the current state of the corpus and for monitoring the effects of
preprocessing.

Use Corpus to load the data. Connect Preprocess Text to it and set your parameters. We’ve used defaults here, just to
see the difference between the default preprocessing in the Word Cloud widget and the Preprocess Text widget.

We can see from the two widgets, that Preprocess Text displays only words, while default preprocessing in the Word
Cloud tokenizes by word and punctuation.

1.14 GeoMap

Displays geographic distribution of data.

1.14.1 Signals

Inputs:

• Data

Data set.

Outputs:

• Corpus

34 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.14. GeoMap 35

Orange3 Text Mining Documentation, Release

A Corpus instance.

1.14.2 Description

GeoMap widget shows geolocations from textual (string) data. It finds mentions of geographic names (countries and
capitals) and displays distributions (frequency of mentiones) of these names on a map. It works with any Orange
widget that outputs a data table and that contains at least one string attribute. The widget outputs selected data
instances, that is all documents containing mentions of a selected country (or countries).

1. Select the meta attribute you want to search geolocations by. The widget will find all mentions of geolocations
in a text and display distributions on a map.

2. Select the type of map you wish to display. The options are World, Europe and USA. You can zoom in and out
of the map by pressing + and - buttons on a map or by mouse scroll.

3. The legend for the geographic distribution of data. Countries with the boldest color are most often mentioned in
the selected region attribute (highest frequency).

To select documents mentioning a specific country, click on a country and the widget will output matching documents.
To select more than one country hold Ctrl/Cmd upon selection.

1.14.3 Example

GeoMap widget can be used for simply visualizing distributions of geolocations or for a more complex interactive
data analysis. Here, we’ve queried NY Times for articles on Slovenia for the time period of the last year (2015-2016).
First we checked the results with Corpus Viewer.

36 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.14. GeoMap 37

Orange3 Text Mining Documentation, Release

Then we sent the data to GeoMap to see distributiosn of geolocations by country attribute. The attribute already
contains country tags for each article, which is why NY Times is great in combinations with GeoMap. We selected
Germany, which sends all the documents tagged with Germany to the output. Remember, we queried NY Times for
articles on Slovenia.

We can again inspect the output with Corpus Viewer. But there’s a more interesting way of visualizing the data.
We’ve sent selected documents to Preprocess Text, where we’ve tokenized text to words and removed stopwords.

Finally, we can inspect the top words appearing in last year’s documents on Slovenia and mentioning also Germany
with Word Cloud.

1.15 Concordance

Display the context of the word.

1.15.1 Signals

Inputs:

• Corpus

A Corpus instance.

Outputs:

• Selected Documents

A Corpus instance.

1.15.2 Description

Concordance finds the queried word in a text and displays the context in which this word is used. It can output
selected documents for further analysis.

1. Information:

• Documents: number of documents on the input.

• Tokens: number of tokens on the input.

• Types: number of unique tokens on the input.

• Matching: number of documents containing the queried word.

2. Number of words: the number of words displayed on each side of the queried word.

3. Queried word.

4. If Auto commit is on, selected documents are communicated automatically. Alternatively press Commit.

38 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

1.15.3 Example

Concordance can be used for displaying word contexts in a corpus. First, we load book-excerpts.tab in Corpus.
Then we connect Corpus to Concordances and search for concordances of a word “doctor”. The widget displays
all documents containing the word “doctor” together with their surrounding (contextual) words. Note that the widget
finds only exact matches of a word.

Now we can select those documents that contain interesting contexts and output them to Corpus Viewer to inspect
them further.

1.16 Sentiment Analysis

Predict sentiment from text.

1.16. Sentiment Analysis 39

Orange3 Text Mining Documentation, Release

1.16.1 Signals

Inputs:

• Corpus

A Corpus instance.

Outputs:

• Corpus

A Corpus instance.

1.16.2 Description

Sentiment Analysis predicts sentiment for each document in a corpus. It uses Liu Hu and Vader sentiment modules
from NLTK. Both of them are lexicon-based.

1. Method:

• Liu Hu: lexicon-based sentiment analysis

• Vader: lexicon- and rule-based sentiment analysis

2. Produce a report.

3. If Auto commit is on, sentiment-tagged corpus is communicated automatically. Alternatively press Commit.

1.16.3 Example

Sentiment Analysis can be used for constructing additional features with sentiment prediction from corpus. First, we
load Election-2016-tweets.tab in Corpus. Then we connect Corpus to Sentiment Analysis. The widget will append
4 new features for Vader method: positive score, negative score, neutral score and compound (combined score).

We can observe new features in a Data Table, where we sorted the compound by score. Compound represents the
total sentiment of a tweet, where -1 is the most negative and 1 the most positive.

Now let us visualize the data. We have some features we are currently not interested in, so we will remove them with
Select Columns.

Then we will make our corpus a little smaller, so it will be easier to visualize. Pass the data to Data Sampler and
retain a random 10% of the tweets.

Now pass the filtered corpus to Heat Map. Use Merge by k-means to merge tweets with the same polarity into one
line. Then use Cluster by rows to create a clustered visualization where similar tweets are grouped together. Click on
a cluster to select a group of tweets - we selected the negative cluster.

40 Chapter 1. Widgets

http://www.nltk.org/api/nltk.sentiment.html

Orange3 Text Mining Documentation, Release

1.16. Sentiment Analysis 41

Orange3 Text Mining Documentation, Release

42 Chapter 1. Widgets

Orange3 Text Mining Documentation, Release

To observe the selected subset, pass the tweets to Corpus Viewer.

1.16.4 References

Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social
Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.

1.16. Sentiment Analysis 43

Orange3 Text Mining Documentation, Release

44 Chapter 1. Widgets

CHAPTER 2

Scripting

2.1 Corpus

class orangecontrib.text.corpus.Corpus(domain=None, X=None, Y=None, metas=None,
W=None, text_features=None, ids=None)

Internal class for storing a corpus.

__init__(domain=None, X=None, Y=None, metas=None, W=None, text_features=None, ids=None)

Parameters

• domain (Orange.data.Domain) – the domain for this Corpus

• X (numpy.ndarray) – attributes

• Y (numpy.ndarray) – class variables

• metas (numpy.ndarray) – meta attributes; e.g. text

• W (numpy.ndarray) – instance weights

• text_features (list) – meta attributes that are used for text mining. Infer them if
None.

• ids (numpy.ndarray) – Indices

copy()
Return a copy of the table.

dictionary
corpora.Dictionary – A token to id mapper.

documents
Returns – a list of strings representing documents — created by joining selected text features.

documents_from_features(feats)

Parameters feats (list) – A list fo features to join.

Returns: a list of strings constructed by joining feats.

45

Orange3 Text Mining Documentation, Release

extend_attributes(X, feature_names, feature_values=None, compute_values=None,
var_attrs=None)

Append features to corpus. If feature_values argument is present, features will be Discrete else Continu-
ous.

Parameters

• X (numpy.ndarray or scipy.sparse.csr_matrix) – Features values to ap-
pend

• feature_names (list) – List of string containing feature names

• feature_values (list) – A list of possible values for Discrete features.

• compute_values (list) – Compute values for corresponding features.

• var_attrs (dict) – Additional attributes appended to variable.attributes.

extend_corpus(metadata, Y)
Append documents to corpus.

Parameters

• metadata (numpy.ndarray) – Meta data

• Y (numpy.ndarray) – Class variables

static from_documents(documents, name, attributes=None, class_vars=None, metas=None, ti-
tle_indices=None)

Create corpus from documents.

Parameters

• documents (list) – List of documents.

• name (str) – Name of the corpus

• attributes (list) – List of tuples (Variable, getter) for attributes.

• class_vars (list) – List of tuples (Variable, getter) for class vars.

• metas (list) – List of tuples (Variable, getter) for metas.

• title_indices (list) – List of indices into domain corresponding to features which
will be used as titles.

Returns Corpus.

has_tokens()
Return whether corpus is preprocessed or not.

ngrams
generator – Ngram representations of documents.

static retain_preprocessing(orig, new, key=Ellipsis)
Set preprocessing of ‘new’ object to match the ‘orig’ object.

set_text_features(feats)
Select which meta-attributes to include when mining text.

Parameters feats (list or None) – List of text features to include. If None infer them.

store_tokens(tokens, dictionary=None)

Parameters tokens (list) – List of lists containing tokens.

titles
Returns a list of titles.

46 Chapter 2. Scripting

Orange3 Text Mining Documentation, Release

tokens
np.ndarray – A list of lists containing tokens. If tokens are not yet present, run default preprocessor and
save tokens.

2.2 Preprocessor

This module provides basic functions to process Corpus and extract tokens from documents.

To use preprocessing you should create a corpus:

>>> from orangecontrib.text import Corpus
>>> corpus = Corpus.from_file('book-excerpts')

And create a Preprocessor objects with methods you want:

>>> from orangecontrib.text import preprocess
>>> p = preprocess.Preprocessor(transformers=[preprocess.LowercaseTransformer()],
... tokenizer=preprocess.WordPunctTokenizer(),
... normalizer=preprocess.SnowballStemmer('english'),
... filters=[preprocess.StopwordsFilter('english'),
... preprocess.FrequencyFilter(min_df=.1)])

Then you can apply you preprocessor to the corpus and access tokens via tokens attribute:

>>> new_corpus = p(corpus)
>>> new_corpus.tokens[0][:10]
['hous', 'say', ';', 'spoke', 'littl', 'one', 'hand', 'wall', 'hurt', '?']

This module defines default_preprocessor that will be used to extract tokens from a Corpus if no preprocess-
ing was applied yet:

>>> from orangecontrib.text import Corpus
>>> corpus = Corpus.from_file('deerwester')
>>> corpus.tokens[0]
['human', 'machine', 'interface', 'for', 'lab', 'abc', 'computer', 'applications']

class orangecontrib.text.preprocess.Preprocessor(transformers=None, tok-
enizer=None, normalizer=None,
filters=None, ngrams_range=None,
pos_tagger=None)

Holds document processing objects.

transformers
List([BaseTransformer] – transforms strings

tokenizer
BaseTokenizer – tokenizes string

normalizer
BaseNormalizer – normalizes tokens

filters
List[BaseTokenFilter] – filters unneeded tokens

__call__(corpus, inplace=True, on_progress=None)
Runs preprocessing over a corpus.

Parameters

2.2. Preprocessor 47

Orange3 Text Mining Documentation, Release

• corpus (orangecontrib.text.Corpus) – A corpus to preprocess.

• inplace (bool) – Whether to create a new Corpus instance.

set_up()
Called before every __call__. Used for setting up tokenizer & filters.

tear_down()
Called after every __call__. Used for cleaning up tokenizer & filters.

2.3 Twitter

class orangecontrib.text.twitter.Credentials(consumer_key, consumer_secret)
Twitter API credentials.

class orangecontrib.text.twitter.TwitterAPI(credentials, on_progress=None,
should_break=None, on_error=None,
on_rate_limit=None)

Fetch tweets from the Tweeter API.

Notes

Results across multiple searches are aggregated. To remove tweets form previous searches and only return
results from the last search either call reset method before searching or provide collecting=False argument to
search method.

reset()
Removes all downloaded tweets.

search_authors(authors, *, max_tweets=0, collecting=False)
Search by authors.

Parameters

• authors (list of str) – A list of authors to search for.

• max_tweets (int) – If greater than zero limits the number of downloaded tweets.

• collecting (bool) – Whether to collect results across multiple search calls.

Returns Corpus

search_content(content, *, max_tweets=0, lang=None, allow_retweets=True, collecting=False)
Search by content.

Parameters

• content (list of str) – A list of key words to search for.

• max_tweets (int) – If greater than zero limits the number of downloaded tweets.

• lang (str) – A language’s code (either ISO 639-1 or ISO 639-3 formats).

• allow_retweets (bool) – Whether to download retweets.

• collecting (bool) – Whether to collect results across multiple search calls.

Returns Corpus

48 Chapter 2. Scripting

Orange3 Text Mining Documentation, Release

2.4 New York Times

class orangecontrib.text.nyt.NYT(api_key)
Class for fetching records from the NYT API.

__init__(api_key)

Parameters api_key (str) – NY Time API key.

api_key_valid()
Checks whether api key given at initialization is valid.

search(query, date_from=None, date_to=None, max_docs=None, on_progress=None,
should_break=None)

Parameters

• query (str) – Search query.

• date_from (date) – Start date limit.

• date_to (date) – End date limit.

• max_docs (int) – Maximal number of documents returned.

• on_progress (callback) – Called after every iteration of downloading.

• should_break (callback) – Callback for breaking the computation before the end.
If it evaluates to True, downloading is stopped and document downloaded till now are
returned in a Corpus.

Returns Search results.

Return type Corpus

2.5 The Guardian

This module fetches data from The Guardian API.

To use first create TheGuardianCredentials:

>>> from orangecontrib.text.guardian import TheGuardianCredentials
>>> credentials = TheGuardianCredentials('<your-api-key>')

Then create TheGuardianAPI object and use it for searching:

>>> from orangecontrib.text.guardian import TheGuardianAPI
>>> api = TheGuardianAPI(credentials)
>>> corpus = api.search('Slovenia', max_documents=10)
>>> len(corpus)
10

class orangecontrib.text.guardian.TheGuardianCredentials(key)
The Guardian API credentials.

__init__(key)

Parameters key (str) – The Guardian API key. Use test for testing purposes.

valid
Check if given API key is valid.

2.4. New York Times 49

Orange3 Text Mining Documentation, Release

class orangecontrib.text.guardian.TheGuardianAPI(credentials, on_progress=None,
should_break=None)

__init__(credentials, on_progress=None, should_break=None)

Parameters

• credentials (TheGuardianCredentials) – The Guardian Creentials.

• on_progress (callable) – Function for progress reporting.

• should_break (callable) – Function for early stopping.

search(query, from_date=None, to_date=None, max_documents=None, accumulate=False)
Search The Guardian API for articles.

Parameters

• query (str) – A query for searching the articles by

• from_date (str) – Search only articles newer than the date provided. Date should be
in ISO format; e.g. ‘2016-12-31’.

• to_date (str) – Search only articles older than the date provided. Date should be in
ISO format; e.g. ‘2016-12-31’.

• max_documents (int) – Maximum number of documents to retrieve. When not given,
retrieve all documents.

• accumulate (bool) – A flag indicating whether to accumulate results of multiple con-
sequent search calls.

Returns Corpus

2.6 Wikipedia

class orangecontrib.text.wikipedia.WikipediaAPI(on_error=None)
Wraps Wikipedia API.

Examples

>>> api = WikipediaAPI()
>>> corpus = api.search('en', ['Barack Obama', 'Hillary Clinton'])

search(lang, queries, articles_per_query=10, should_break=None, on_progress=None)
Searches for articles.

Parameters

• lang (str) – A language code in ISO 639-1 format.

• queries (list of str) – A list of queries.

• should_break (callback) – Callback for breaking the computation before the end.
If it evaluates to True, downloading is stopped and document downloaded till now are
returned in a Corpus.

• on_progress (callable) – Callback for progress bar.

50 Chapter 2. Scripting

Orange3 Text Mining Documentation, Release

2.7 Topic Modeling

class orangecontrib.text.topics.LdaWrapper(**kwargs)

fit(corpus, **kwargs)
Train the model with the corpus.

Parameters corpus (Corpus) – A corpus to learn topics from.

transform(corpus)
Create a table with topics representation.

class orangecontrib.text.topics.LsiWrapper(**kwargs)

fit(corpus, **kwargs)
Train the model with the corpus.

Parameters corpus (Corpus) – A corpus to learn topics from.

transform(corpus)
Create a table with topics representation.

class orangecontrib.text.topics.HdpWrapper(**kwargs)

fit(corpus, **kwargs)
Train the model with the corpus.

Parameters corpus (Corpus) – A corpus to learn topics from.

transform(corpus)
Create a table with topics representation.

2.8 Tag

A module for tagging Corpus instances.

This module provides a default pos_tagger that can be used for POSTagging an English corpus:

>>> from orangecontrib.text.corpus import Corpus
>>> from orangecontrib.text.tag import pos_tagger
>>> corpus = Corpus.from_file('deerwester.tab')
>>> tagged_corpus = pos_tagger.tag_corpus(corpus)
>>> tagged_corpus.pos_tags[0] # you can use `pos_tags` attribute to access tags
→˓directly
['JJ', 'NN', 'NN', 'IN', 'NN', 'NN', 'NN', 'NNS']
>>> next(tagged_corpus.ngrams_iterator(include_postags=True)) # or `ngrams_iterator`
→˓to iterate over documents
['human_JJ', 'machine_NN', 'interface_NN', 'for_IN', 'lab_NN', 'abc_NN', 'computer_NN
→˓', 'applications_NNS']

class orangecontrib.text.tag.POSTagger(tagger, name=’POS Tagger’)
A class that wraps nltk.TaggerI and performs Corpus tagging.

tag_corpus(corpus, **kwargs)
Marks tokens of a corpus with POS tags.

Parameters corpus (orangecontrib.text.corpus.Corpus) – A corpus instance.

2.7. Topic Modeling 51

Orange3 Text Mining Documentation, Release

class orangecontrib.text.tag.StanfordPOSTagger(*args, **kwargs)

classmethod check(path_to_model, path_to_jar)
Checks whether provided path_to_model and path_to_jar are valid.

Raises ValueError – in case at least one of the paths is invalid.

Notes

Can raise an exception if Java Development Kit is not installed or not properly configured.

Examples

>>> try:
... StanfordPOSTagger.check('path/to/model', 'path/to/stanford.jar')
... except ValueError as e:
... print(e)
Could not find stanford-postagger.jar jar file at path/to/stanford.jar

2.9 Async Module

Helper utils for Orange GUI programming.

Provides asynchronous() decorator for making methods calls in async mode. Once method is decorated it will
have task.on_start(), task.on_result() and task.callback() decorators for callbacks wrapping.

• on_start must take no arguments

• on_result must accept one argument (the result)

• callback can accept any arguments

For instance:

class Widget(QObject):
def __init__(self, name):

super().__init__()
self.name = name

@asynchronous
def task(self):

for i in range(3):
time.sleep(0.5)
self.report_progress(i)

return 'Done'

@task.on_start
def report_start(self):

print('`{}` started'.format(self.name))

@task.on_result
def report_result(self, result):

print('`{}` result: {}'.format(self.name, result))

52 Chapter 2. Scripting

Orange3 Text Mining Documentation, Release

@task.callback
def report_progress(self, i):

print('`{}` progress: {}'.format(self.name, i))

Calling an asynchronous method will launch a daemon thread:

first = Widget(name='First')
first.task()
second = Widget(name='Second')
second.task()

first.task.join()
second.task.join()

A possible output:

`First` started
`Second` started
`Second` progress: 0
`First` progress: 0
`First` progress: 1
`Second` progress: 1
`First` progress: 2
`First` result: Done
`Second` progress: 2
`Second` result: Done

In order to terminate a thread either call stop() method or raise StopExecution exception within task():

first.task.stop()

2.9. Async Module 53

Orange3 Text Mining Documentation, Release

54 Chapter 2. Scripting

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

55

Orange3 Text Mining Documentation, Release

56 Chapter 3. Indices and tables

Python Module Index

o
orangecontrib.text.guardian, 49
orangecontrib.text.preprocess, 47
orangecontrib.text.tag, 51
orangecontrib.text.twitter, 48
orangecontrib.text.widgets.utils.concurrent,

52

57

Orange3 Text Mining Documentation, Release

58 Python Module Index

Index

Symbols
__call__() (orangecontrib.text.preprocess.Preprocessor

method), 47
__init__() (orangecontrib.text.corpus.Corpus method), 45
__init__() (orangecontrib.text.guardian.TheGuardianAPI

method), 50
__init__() (orangecontrib.text.guardian.TheGuardianCredentials

method), 49
__init__() (orangecontrib.text.nyt.NYT method), 49

A
api_key_valid() (orangecontrib.text.nyt.NYT method), 49

C
check() (orangecontrib.text.tag.StanfordPOSTagger class

method), 52
copy() (orangecontrib.text.corpus.Corpus method), 45
Corpus (class in orangecontrib.text.corpus), 45
Credentials (class in orangecontrib.text.twitter), 48

D
dictionary (orangecontrib.text.corpus.Corpus attribute),

45
documents (orangecontrib.text.corpus.Corpus attribute),

45
documents_from_features() (orangecon-

trib.text.corpus.Corpus method), 45

E
extend_attributes() (orangecontrib.text.corpus.Corpus

method), 45
extend_corpus() (orangecontrib.text.corpus.Corpus

method), 46

F
filters (orangecontrib.text.preprocess.Preprocessor at-

tribute), 47
fit() (orangecontrib.text.topics.HdpWrapper method), 51
fit() (orangecontrib.text.topics.LdaWrapper method), 51

fit() (orangecontrib.text.topics.LsiWrapper method), 51
from_documents() (orangecontrib.text.corpus.Corpus

static method), 46

H
has_tokens() (orangecontrib.text.corpus.Corpus method),

46
HdpWrapper (class in orangecontrib.text.topics), 51

L
LdaWrapper (class in orangecontrib.text.topics), 51
LsiWrapper (class in orangecontrib.text.topics), 51

N
ngrams (orangecontrib.text.corpus.Corpus attribute), 46
normalizer (orangecontrib.text.preprocess.Preprocessor

attribute), 47
NYT (class in orangecontrib.text.nyt), 49

O
orangecontrib.text.guardian (module), 49
orangecontrib.text.preprocess (module), 47
orangecontrib.text.tag (module), 51
orangecontrib.text.twitter (module), 48
orangecontrib.text.widgets.utils.concurrent (module), 52

P
POSTagger (class in orangecontrib.text.tag), 51
Preprocessor (class in orangecontrib.text.preprocess), 47

R
reset() (orangecontrib.text.twitter.TwitterAPI method), 48
retain_preprocessing() (orangecontrib.text.corpus.Corpus

static method), 46

S
search() (orangecontrib.text.guardian.TheGuardianAPI

method), 50
search() (orangecontrib.text.nyt.NYT method), 49

59

Orange3 Text Mining Documentation, Release

search() (orangecontrib.text.wikipedia.WikipediaAPI
method), 50

search_authors() (orangecontrib.text.twitter.TwitterAPI
method), 48

search_content() (orangecontrib.text.twitter.TwitterAPI
method), 48

set_text_features() (orangecontrib.text.corpus.Corpus
method), 46

set_up() (orangecontrib.text.preprocess.Preprocessor
method), 48

StanfordPOSTagger (class in orangecontrib.text.tag), 52
store_tokens() (orangecontrib.text.corpus.Corpus

method), 46

T
tag_corpus() (orangecontrib.text.tag.POSTagger method),

51
tear_down() (orangecontrib.text.preprocess.Preprocessor

method), 48
TheGuardianAPI (class in orangecontrib.text.guardian),

49
TheGuardianCredentials (class in orangecon-

trib.text.guardian), 49
titles (orangecontrib.text.corpus.Corpus attribute), 46
tokenizer (orangecontrib.text.preprocess.Preprocessor at-

tribute), 47
tokens (orangecontrib.text.corpus.Corpus attribute), 46
transform() (orangecontrib.text.topics.HdpWrapper

method), 51
transform() (orangecontrib.text.topics.LdaWrapper

method), 51
transform() (orangecontrib.text.topics.LsiWrapper

method), 51
transformers (orangecontrib.text.preprocess.Preprocessor

attribute), 47
TwitterAPI (class in orangecontrib.text.twitter), 48

V
valid (orangecontrib.text.guardian.TheGuardianCredentials

attribute), 49

W
WikipediaAPI (class in orangecontrib.text.wikipedia), 50

60 Index

	Widgets
	Scripting
	Indices and tables
	Python Module Index

